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-1 Why DRL for the ADNs?

Modern Active Distribution Network Landscape

€ 10° + controllable nodes across storage, flexible load, EVs and
distributed energy resources (DERSs) in a modern ADN:s.

— AN RIS T B0 8 Sl R R AT 2 SR L 10°

10°+

10° + Dispatchable Assets

@ The cyber, physical, and social layers interact bidirectionally, forming a
CPSES.
R, V5 a=FmAHEER, HRER-ME-HSMERERS

@ Decision space becomes more dimensional and more constrained — a
hallmark of MILP-class problems.
Cyber-Physical-Social Energy System R AYEEMA R BT, 2 H MILP 7] 81 SR RRAE
(CPSES)

Shorter horizons

amplify fluctuations @ Uncertainties propagate and amplify across the cyber, physical, and
social layers, demanding faster real-time dispatch, such as 1-5 min.

\ S\ R HEAECPSES R IFRHOR, RSN R TESR, 1S5
< i il _ € Large-scale MILP formulation of dispatch—formally NP-hard—poses a
oy ToMindles  oMinwtes THInoe fundamental tension with real-time dispatch.
Real-time Control (1-5 min ) U EE ) KRS MILP A b2 NPAERR, 5 Seishiff B T AR A i 2
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"1 Why DRL for the ADNs?

From Conventional Optimization to DRL Paradigm

DRL Paradigm

Conventional Optimization , ,
» DRL scales extend via policy

» MILP scale exponentially
networks, which grows linearly

DRLAE#KEEFMILP, #HIE
Y ER A 2L R 2R 4 e 1

» DRL makes real-time decisions

with decision accounts.
MILPRER R T 235 5N IE NN

» Dispatching results depend
through environment interaction.

DRL&EZ 5 ERZ B KRR,
AU 45
» DRL dynamically fine-tunes

on the forecasting accuracy.

1 45 RAR B FUN TS X

» Static modelling is no longer
parameters online.

sustainable TN Wi s .
DRLEZ &N SHIASEEN R St

B AE DUE BN A PJM, CAISO, SGCC; A

= Computation-heavy, IEEE P2801 draft Model-free,
(% || Static & Inflexible ( Al Dispatch) Adaptive & Scalable

\N
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DRL-driven Dispatch Process in ADNs
& StatesCIAD):s; = {SOCt, Py’ pyt, P%d};
& Actions(z11E): a, = PES

€ Rewards(ZZfif): The agent receives an immediate reward 1;
when the stage transitions from s; to s;,; with action a;.
Namely, the 7, 1s the accumulation of the objective
function over the time steps, including the objective
function and the discharge/charge of ESS within a
reasonable range after one day.

_ —F(a;) t#=T
""T\=F(a) -G t=T

@ State transition(CIR 7S5 #7): state is considered as measured

values after the action a; finished.

€ Objective and discount factor (ffL1£): The objective of each
agent 1s to maximize the cumulative rewards:
T
R = vir.
t=1

1
1
: o A :
| / S : S
! i
| 1
| 1
| 1
| ) 7 I
| 1
| 1
! :
ot k& 8 i Il
| Fu g @Ig - ! a,
i Traditional ESS Hybrid ESS Loads :
1
1
1
1

st = {50C., P’ P, Pi¢}

Thus, the dispatch of ADNs can be defined as finding an
optimal strategy m to maximize the expectation of cumulative
rewards R: max E [XI_;ytre |ss, a;]

RIURK
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Panda Slight disguised data Gibbon
® Slight Data Injection: Can lead to entirely different classification results.

First-order Taylor LN O REfE TR, BN EFRRAVARR
expansion term disturbance

f(z)= flz+e) = f(z)+ Vf(z)- (Jrva( ell) local gradient sensitivity
In deep neural networks, the chain rule across multiple layers further amplifies the initial perturbation, ultimately leading
to significant decision deviations. JREMEMLEEH, FIXFFNEILZE#HA TR A —T K

Thus, in DRL-driven distribution network dispatch, injecting adversarial data that resemble normal data can cause
£ 30

completely erroneous dispatch decisions. JE N5 IE & £ IBABMNAVEEREIE, ©J 8 SEECE MDRLE 82 A5
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Attack Feasibility in DRL-driven Active Distribution Networks

= Do A € Open and Vulnerable Distributed Sensors

I S, l- . . s : N .

B I 55 31 2 0 24 3 A S

/:/'PVS ,'r/ Sensors deployed at distributed resources (PVs, WTs, ESSs)
- w ) Decision are poorly protected, making them susceptible to tampering
= g g :\ & Center o niecti
Z e | wn S (L8 | Q and malicious data injection.
5 Ay £ | 5 | |
= & T2 5 8 & Enoryption w5 % € Bypassing Detection through Stealthy Perturbations
g AR oap 8 Devie || Physia S B BB AT Bt 5 4 B
g Power Ny I _ . o Large deviations are blocked by firewalls,but small, normal-
= 4] | n | Adversarial samples = . . . . .
= g | ooq. | mimicking normal data like adversarial modifications can bypass perimeter defenses
S .

|Open sensors;; (hard to detect, easily go and infiltrate the control center.

I'Vulnerable to| to decision center)

| Tampering |

€ DRL is highly sensitive to minor disturbance.
, , | DRI 8 R0\ 5175 2 5
Stealthy adversarial attacks can infiltrate DRL-driven ADNs In traditional dispatch, small disturbances are
via the "open-edge sensors — firewall — dispatch center" constrained by physical modeling; whereas in DRL,
_pathway, b\yp\assmg\ con\VuJenthILal security layers. . local gradient sensitivity amplifies perturbations.
DRLIEE & 4 o] @1 FF I i % ke — B KIS — 1 E
BRI ZEIRFE NI E R
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Adversarial Attack Strategies & Results for ADNs

‘{’

‘ 3-1 Single-Agent Adversarial Attacks —Using Local Gradient Sensitivity
AR B A EE SN B Moy ASRHIEDRLEK 51 [ ADNs &) #5652 BURRAE

v\‘ SR Rl A VR R TSt R PR 1 58 T S0 8 Al 5Bk 90 B 8 1 2 i
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g.gl Adversarial Attack Strategies & Results for ADNs

Single-Agent Adversarial Attacks--Methodology
Proposes the Model INterference via MALicious noise (MINMAL) method, which maximizes the deviation between the model‘s

output actions and the correct actions. BFZMERER AN, EAF RN KR E KRB S

1. Find an adversarial action a’ that maximizes f

!
the loss function: argmax MSE(a’, a) \ Adversarial Malicious

7'[(5’) — maX”(g”SSL(S + 6, Cl)| _1
S o S¢ Encoder
minima

disturbance state
. + §t
2. To navigate away from local - [ 1t ] :
introduce a random perturbation n to the o o

observation
o Random
original sample s. \_ Hack generafor /

max||5||S£L(S +n+ 0, Cl)|c

3. Employ a multi-step gradient ascent method to iteratively update the perturbation o
Otr1 = Op + a - sign (VS[, (s+n+46, a)| )
S

4. Projection operation 1s applied to the updated perturbation to ensure the generated adversarial samples stay within the
allowable perturbation range
3
O0¢+1 = Min o
o ( II&II) ‘

5. By iteratively adding small perturbations and performing projection at each step to make the generated adversarial

perturbations close to the original state. —
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age Adversarial Attack Strategies & Results for ADNs

1.125

1.100

Single-Agent Attack Results — All Sensors
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Fig.1 Voltage distribution statistics after the continuous attacks

TABLE I Voltage under different attack amplitudes

Vol Un- MINMAL

(p-u) attacked 0.05 0.1 0.2 0.4
Min 0.952 0.936 0.860 0.795 0.775
Max 1.044 1.118 1.148 1.125 1.105

>

Even a small attack of €=0.05, cause the DRL-based
ADN to produce overvoltage results.

lgy

=005
= = DFL model

109

107

- ——
101 - \
——
—_ b
n—— L%

099

—
.

o7 ' i e o o o . . e
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Fig.2 Voltage distribution before and after the single-time attack

» A single-time adversarial attack injected at a critical
moment can  trigger  overvoltage  conditions,
compromising grid stability.
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.Q:l Adversarial Attack Strategies & Results for ADNs

Single-Agent Attack Results — Section of Sensors
TABLE II Comparisons in Different Single-dimensional Attacks

ESS PV WT Load
Vol (p.u.) Un-attacked
e =0.05 =01 e =0.05 =01 e =0.05 =01 e =0.05 e=0.1
Min 0.952 0.952 0.952 0.938 0.936 0.935 0.934 0.937 0.935
Max 1.044 1.044 1.043 1.108 1.113 1.112 1.115 1.096 1.109

» Even perturbing specific sensor types—an attack scenario that is easier to implement—still causes major decision
deviations, with WTs being the most vulnerable; SoC of the ESSs show negligible impact.

Single-Agent Attack Results — Single sensor

ESS PV WT Load
Vol (p.u.) Un-attacked
e = 0.05 € = 0.05(Node 27) € = 0.05(Node 32) € = 0.05(Node 18)
Min 0.952 0.952 0.935 0.935 0.936
Max 1.044 1.044 1.104 1.108 1.096

» Single-sensor attacks, which are the easiest to implement, can induce significant decision deviations by injecting small
perturbations at the most vulnerable node in the grid.

Compared with random noise attacks, and gradient-based attacks, using different DRL models. Results show that
the proposed attack is useful and powerful.

I —



g. Adversarial Attack Strategies & Results for ADNs m uFﬂM

Multi-Agent Adversarial Attacks --Methodology

Attacked Observation o0’ ADN Deteriorated power flow based on
v S | maximum attack effect, i.e., eq(6) or (8).
r=== . TSt TTT T TS s T TS T TSI TSI TI ST T I T e T
| 01 R > Agent 1 ----C-l%--» :
1

i : o | - !
! ! o; Attacked Action aj | :
o 1 : ’

. |
Y IR > Agent i B |
| ! ! :
I : | . I
| 1 / a’ 1 1
: I On l I !
Lo } l ! <

1 1 1 .
"o, e ) At | ! Optlmal power ﬂow_ based on
! ! I | ! maximum rewards, i.e., eq(3).
- 1
Observations Agents n Environment Operation Results of ADNs
Attacking Information Flow — ------- -+ Basic DRL Information Flow
® This attack can be propagated and amplified by the interaction between all agents(X &N GG INEEN L+ FHHREMES|S) !
0]
k +1 _ att §

Gradient Attack Sparse Diffusion
® [f the output disturbance is in the same direction of all agents, the accumulation of multiple disturbances will result in greater

fluctuation (B AT RN EN B RS e AR DS TILs), KZ B YA —a{EH TR AR

8; :~P = softmax (Latt| , V8¢ €O !
i,t=lv¢n,((0i,t+5i,t,c)



.&- Adversarial Attack Strategies & Results for ADNs

Multi-Agent Adversarial Attacks —Part of Results

vUitdyy=ip.- v

— TABLE I
= mgzﬁf RESULTS UNDER DIFFERENT ATTACKS AGAINST FULL-AGENT
0.05 0.1 0.2
| N Std 9.405
* 1 1 el L L FGSM 13.938 19.839 31.123
ror = ppiibf A £ T I*‘Jﬁﬁmiﬁﬁ“w; mw [Tl Noise 10.483 10.936 13.592
el MADSAS 17.623 26.382 39.678
o MADSA* 23.459 40.819 44.315
MADSA- 22.936 39.963 54.785

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
Node

Fig. 1. Voltage statistics when MADSA selects different attack directions.

® Voltage deviations become significant, shifting either upward or downward depending on the attack direction.

A A BB SE AR - RS, BRI, IMERRFERK.

® Proposed method achieves significantly stronger adversarial effects than conventional attacks, as shown in the rewards.
MEMEZHETUEL, FiRENNE I ERBEESURGME, WEAREMRE .
—



.&- Adversarial Attack Strategies & Results for ADNs

» In continuous domains, small
| perturbations can  cause large
continuous output deviations.

Ax small:

AT

0.808

ol L\ E e R SER A AR AL
o T Ko ))
Al ®initial . _ | \ » In  discrete =~ domains,  small
® Attack perturbations can  directly flip

0.000

1 1 !

—-31 -2 0 2 4 _ S ;. - . . decision categories.
Continuous domain: local gradient sensitivity Discrete domain: action flip BRI AKRERRKRTEEIHE
TS R AU RO S ERI R E R E AR A K
APGA-P
KL(p|lq)= Z p:log Pi Decision Bias Measures distribution shift Non-directional attack;
l j Inducer before and after attack Increased system loss;
. Dramatic changes in reward
CW(x, t)=max( max( F0); — F(0). +1,0) Adversarial Strength Inc1jeases conﬁd;:nce in APGA-F
Inducer mcorrect actions .
Directed attack;
1 1 - : |
B = z (—- )L, Adlte T htie Dynamically balances Frequent changes in topology.
Lt W) yN_ 1 /Wk multiple attack objectives Small ChaH ges in iiiiiiii .
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Adversarial Attack Strategies & Results for ADNs

T()pology Reconﬁguration Attack— Results Fig.1 Impact of varying attack frequencies on system degradatlon

FGSM against economic model FGSM against safety model 8
PGD against economic model =——PGD against safety model =
APGA-P against economic model ~ —=APGA-P against safety model

19 20 21 22
®

12.00%

10.00%

8.00%

6.00%
Power Loss Increase in Economic Model After Attack (%)

30.00%  40.00%  50.00%  60.00%  70.00% 80.00

Voltage Fluctuation Increase in Safety Model After Attack (%)

Closed circuit, excluded Closed circuit, involved in ___ Opened circuit, involved s E
from DNR operations DNR operations in DNR operations =l N
@ Node, connecting loads @ Node, connecting loads and DERs g| g

0.00%
0.00%

8 Attack Frequency (Number of Occurrences per day)

B — N

STD
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Defense Strategies & Results for ADNs

4-1 Adversarial Training: Basic Defense Foundation
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.&- Defense Strategies & Results for ADNs

A‘!Y__?F?.?Ki__?!_l___y?!@i_!}g_?ﬁf‘_'_?_if_P_?__f__e“Se Foundation—Methodology

Reinforcement
Intcraction

Environment

J—h

Tyanitia

ml\

argimax MSE (a’, a)

L]— et . - n
Random
Adversarial generator moise

Adversarial
dlsiulbame

lalicions m

state - i

_)_. o - Adversarial
g replay buoffer

3.{

Lig) =
Eoon[£06,5)] + AT, 5[£(8. )]

T

Robustness traini

15

Cleaf loss |

Adversarial loss

» Dual-buffer strategy to avoid overfitting of one attack.

XX 2% SR il S 1T 1 & SR AP Iy

Adversarial Training: Basic Defense Foundatlon—Results

TABLE I
Defense Results Against Continuous Attacks

112

11

108

s

Mi voltage Max voltage Power loss S Fob
(p.u.) (p.u.) (MWh) T 3
é“l.m
Basic 0.952 1.044 1.39 10.88
Un-defensed 0.936 1.118 1.98 16.98 .
Defensed 0.951 1.086 1.62 14.09

g

/

» Adversarial training is dynamic and self-adaptive,
responding to different attack types during training.

AT BIRBEXN MG SEEMBEN

— — DREL model

—— Attack(e=0.05)
—— Defense

1 23 4 5 6 7 8 9101112131415}'godgm19202122232425262?282930313233
5

Fig. 1. Vol
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Curriculum Adversarial Training (CAT)

Initial Task (Easy Adversarial Samples)

Il

Increase Difficulty (Moderate Adversarial Samples)

Introduce Multiple Attack Modes (Advanced Adversarial
Samples)

p

Increase Sample Concentration and Attack Magnitude

-

Comprehensive Training and Evaluation

—

Final Full-Range Adversarial Training

Voltage(p.u.)

Defense Strategies & Results for ADNs

o LEEETTERE o

8

+ + 16
. . TFargeted attack result




)

av

Model Enhancement: Accelerating Robust Learning

Defensive Strategy Based on Gradient Leveling
Regularization (GLR) and a New Neural Network

100

® Gradient Leveling of the Loss Function: Apply gradient *
leveling near the interaction sequence in the loss function ”

to minimize the sensitivity.

R EIENI{E

New Neural Network for Enhanced Convergence:
handle uncertainty and noise in input variables by
incorporating new neural network, enhancing the
convergence ability.

FT AR R M TR T

Decision-Making Strategy: FDI attacks occur less
frequently, a hybrid decision-making strategy is used:

_ tn(se), :R(St; HH(St)) =1
.UHG(St); :R(St; HH(St)) =0
RERBIRSEE

40

20

80-

=
=

40

20

Defense Strategies & Results for ADNs

ESS 1

Tranning with FNN
Tranning without FNN

ESS 2

Tranning with FNN
Tranning without FNN

0 500 1000 1500 2000 2500 3000

1500 2000 2500 3000

ESS 3

Tranning with FNN
Tranning without FNN

\ e S

ESS 4

Tranning with FNN
Tranning without FNN

—

0 500 1000 1500 2000 2500 3000

1000 1500

2000

2500 3000

An example using the FNN structure .
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Conclusions & Future Work

Future Work

Conclusions

» Emerging Risks under DRL-Driven ADNs

Open-edge sensors + local gradient sensitivity, create new risks.

» Strong Impact of Adversarial Attacks
Both continuous-domain and discrete-domain attacks can cause

severe operational risks with only small perturbations.

» Layered Defense Strategies Enhance Robustness

Adversarial training, curriculum learning training (CAT), and
network  structure  enhancements provides  substantial
improvements in dispatch resilience under adversarial

environments.

» Extension to Integrated Energy Systems (IESs)
Expand the adversarial robustness framework to multi-energy

systems, including electricity, heating, and cooling networks.

» DRL-Driven Real-Time Vulnerability Assessment
Develop real-time methods to dynamically identify and quantify

system vulnerabilities during DRL-based dispatch operations.

» Advanced Défense Mechanism Development
Design adaptive defense-switching strategies and explore co-
optimization of control and communication infrastructures for

greater system resilience.
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